This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Pyrolysis of Stabilised Phosphorus Ylides as a Route to new Hetero Carbenes

R. Alan Aitken^a; Martin J. Drysdale^a; Adrian Ford^a; Paul E. Y. Milne^a; Duncan W. Russell^a; Bruce M. Ryan^a; Martin Whittaker^a

^a Department of Chemistry, University of St. Andrews, Fife, UK

To cite this Article Aitken, R. Alan , Drysdale, Martin J. , Ford, Adrian , Milne, Paul E. Y. , Russell, Duncan W. , Ryan, Bruce M. and Whittaker, Martin(1993) 'Pyrolysis of Stabilised Phosphorus Ylides as a Route to new Hetero Carbenes', Phosphorus, Sulfur, and Silicon and the Related Elements, 75: 1, 31-34

To link to this Article: DOI: 10.1080/10426509308037357 URL: http://dx.doi.org/10.1080/10426509308037357

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

PYROLYSIS OF STABILISED PHOSPHORUS YLIDES AS A ROUTE TO NEW **HETERO CARBENES**

R. ALAN AITKEN*, MARTIN J. DRYSDALE, ADRIAN FORD, PAUL E.Y. MILNE, DUNCAN W. RUSSELL, BRUCE M. RYAN AND MARTIN WHITTAKER

Department of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9ST, UK.

Abstract: Flash vacuum pyrolysis of sulphonyl- and sulphinyl-stabilised phosphorus ylides results in loss of either phosphine or phosphine oxide to generate thio-, sulphinyl- and sulphonyl-carbenes which undergo a variety of rearrangement and insertion processes to give stable products. The first case of phosphine extrusion from a B-oxo ylide is reported, giving access to benzotriazolyl acetyl carbene which rearranges to an acetyl benzotriazine and 2-cyanoacetophenone.

Thermal extrusion of Ph₃PO from both phosphorus ylides¹ and phosphinimines² stabilised by an α-acyl group is well known to lead to alkynes and nitriles, respectively, and in the former case the use of flash vacuum pyrolysis (FVP) gives improved yields in many cases.³ We have carried out a detailed study of the pyrolytic behaviour of a variety of phosphorus ylides stabilised by other oxygen-containing functional groups, notably sulphoxide and sulphone. As described below, this has revealed processes involving loss of both phosphine and phoshine oxide, so that in general (1) may give either (2) or (3) depending both on the nature of X and the substituents present.

SULPHONYL YLIDES

The results for sulphonyl stabilised ylides have already been described briefly.⁴ Compounds of type (4) lost Ph₂PO to give a complex mixture of products which could not be fully identified and the process was of no preparative value. In contrast the phenylmethanesulphonyl ylides (5) underwent exclusive loss of Ph₃P to give products which could be accounted for by intramolecular insertion and rearrangement of the sulphonylcarbenes (6). In all cases the alkene products (7) were formed as shown, accompanied in some cases by other products depending on the nature of R.⁴

SULPHINYL YLIDES

A range of sulphinyl ylides have also been prepared by acylation of the appropriate starting ylides with sulphinyl chlorides. For the compounds of type (8) stabilised both by a sulphinyl and an ester group, Ph_3PO is lost and the final product is a vinyl sulphide (9)⁵. We believe that these reactions proceed by intramolecular insertion of the carbene (10) to give a β -lactone which loses CO_2 to afford the observed product. Support for this idea is provided by the pyrolysis of α -sulphonyl- α -diazoesters (11) which gives the expected vinyl sulphones presumably by a similar mechanism. Since (8) is prepared in two steps from RSH and the pyrolysis proceeds in good yield, this represents a viable if

$$\begin{array}{c|c} Ph_3P & CO_2CH_2R^1 \\ O & S \\ R & Ph_3PO \end{array} \begin{array}{c} \vdots & CO_2CH_2R^1 \\ \vdots & \vdots & \vdots \\ S \\ R & (10) \end{array} \begin{array}{c} R^1 & O \\ R-S & O \end{array} \\ & & CO_2CH_2R^1 \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & &$$

unusual route to convert thiols into vinyl sulphides.

The simpler ylides (12) stabilised only by the alkanesulphinyl group undergo a different process. Loss of Ph₃P is followed by rapid rearrangement of the sulphinylcarbene (13) by 1,2-oxygen transfer to give the thioesters.

$$\begin{array}{c|c}
Ph_3P & Ar \\
O & S & R
\end{array}$$

$$\begin{array}{c|c}
Ph_3P & Ar \\
\hline
O & S & R
\end{array}$$

$$\begin{array}{c|c}
O & S^+ & Ar \\
\hline
O & S^+ & R
\end{array}$$

$$\begin{array}{c|c}
O & S^- & R
\end{array}$$

The pyrolytic behaviour of the arenesulphinyl ylides (14) is more complex and is not yet fully understood. Both Ph₃P and Ph₃PO are eliminated and both the resulting carbenes lead to products. The bright blue colour produced is almost certainly due to the thioketones (15) but these are only there in trace amounts and the colour quickly fades due to reaction with some of the other products present. These include the sulphoxide (16) resulting from hydrogen abstraction by one carbene, the thioester from its rearrangement, and products of radical decomposition such as diaryl sulphides.

$$\begin{bmatrix} : & Ar \\ O = S & Ar^1 \end{bmatrix} \xrightarrow{FVP} \xrightarrow{Ph_3P} Ar \xrightarrow{FVP} Ar \xrightarrow{FVP} -Ph_3PO \begin{bmatrix} : & Ar \\ S & Ar^1 \end{bmatrix}$$

$$+ 2H \xrightarrow{Ar} O \xrightarrow{Ar} + Other Products$$

$$O = S \xrightarrow{Ar^1} S \xrightarrow{S} Ar^1 \qquad (15)$$

EXTRUSION OF PHOSPHINE FROM A β-OXO YLIDE

A wide range of benzotriazolyl ylides (17) have been prepared and pyrolysed. They generally lose $Bu^n{}_3PO$ and N_2 to give complex products. In contrast, compound (18) loses $Bu^n{}_3P$ to give two heterocyclic products. After detailed studies these have been confirmed to be 3-acetyl-1,2,4-benzotriazine (19) and 2-cyanoacetophenone (20).⁶ As shown these products can be explained by a series of rearrangements and loss of N_2 from the new carbene (21). The reason for (18) losing $Bu^n{}_3P$ and not $Bu^n{}_3PO$, an apparently unprecedented process, is not yet clear.

REFERENCES

- 1. S. Trippett and D. M. Walker, J. Chem. Soc., 1959, 3874.
- 2. H. Staudinger and E. Hauser, Helv. Chim. Acta, 1921, 4, 861.
- 3. R. A. Aitken and J. I. Atherton, J. Chem. Soc., Chem. Commun., 1985, 1140.
- 4. R. A. Aitken and M. J. Drysdale, J. Chem. Soc., Chem. Commun., 1991, 512.
- 5. R. A. Aitken, M. J. Drysdale and B. M. Ryan, J. Chem. Soc., Chem. Commun., submitted for publication.
- 6. R. A. Aitken, A. Ford, P. E. Y. Milne, D. W. Russell and M. Whittaker, J. Chem. Soc., Chem. Commun., submitted for publication.